48

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.1 JANUARY 2007

| PAPER Special Section on Parallel/Distributed Processing and Systems

Efficient and Tailored Resource Management for the P2P Web

Caching

Kyungbaek KIM™, Student Member and Daeyeon PARK', Member

SUMMARY While web proxy caching is a widely deployed technique,
the performance of a proxy cache is limited by the local storage. Some
studies have addressed this limitation by using the residual resources of
clients via a p2p method and have achieved a very high hit rate. However,
these approaches treat web objects as homogeneous objects and there is
no consideration of various web characteristics. Consequently, the byte hit
rate of the system is limited, external bandwidth is wasted, and perceived
user latency is increased. The present paper suggests an efficient p2p based
web caching technique that manages objects with different policies so as
to exploit the characteristics of web objects, such as size and temporal lo-
cality. Small objects are stored alone whereas large objects are stored by
dividing them into numerous small blocks, which are distributed in clients.
On a proxy cache, header blocks of large objects take the place of objects
themselves and smaller objects are cached. This technique increases the hit
rate. Unlike a web cache, which evicts large objects as soon as possible
in the case where clients fulfill the role of backup storage, large objects
are given higher priority than small objects in the proposed approach. This
maximizes the effect of hits for large objects and thereby increases the byte
hit rate. Furthermore, we construct simple latency models for various p2p
based web caching systems and analyze the effects of the proposed poli-
cies on these systems. We then examine the performances of the efficient
policies via a trace driven simulation. The results demonstrate that the pro-
posed techniques effectively enhance web cache performance, including hit
rate, byte hit rate, and response time.

key words: peer-to-peer, Web caching, replacement algorithm

1. Introduction

Web caching is a widely deployed technique. Its role is to
reduce network traffic, server load, and user-perceived re-
trieval delay by replicating popular content on caches that
are strategically placed within the network. Browser caches
reside in client desktops, and proxy caches are deployed on
dedicated machines at the boundary of corporate networks
and Internet service providers. The performance of a proxy
cache depends on the size of its client community [1]. As
the user community increases in size, so does the probability
that a cached object will soon be requested again. Accord-
ing to this, most proxy caches are deployed at the boundary
of an institution such as a university or a corporation where
users crowd, and the network is connected by a fast LAN.
The performance of a proxy cache has a limitation
caused by the limited cache storage. When the client com-
munity increases in size, the number of requested objects per

Manuscript received March 1, 2006.
Manuscript revised June 30, 2006.

"The authors are with the Department of Electrical Engi-
neering and Computer Science [Division of Electrical Engineer-
ing], Korea Advanced Institute of Science and Technology, 373-1
Guseong-dong Yuseong-gu, Daejeon, 305701, Korea.

a) E-mail: kbkim@sslab.kaist.ac.kr
DOI: 10.1093/ietisy/e90—-d.1.48

second also increases. General proxy caches store new ob-
jects for future requests and evict old objects to make room
for the new objects. If the proxy cache storage area is too
small to store both the new and old objects, objects will be
evicted before they can fulfill user requests, and thus the
performance of the proxy cache decreases. That is, when
more clients want to use the proxy cache, more proxy cache
storage is needed to conserve the level of performance.

Some works [2]-[5] have exploited p2p systems to sup-
port web caching. In s web caching system, the main per-
formance limitation is the size of the cache storage. This
limitation has been addressed by making use of the resid-
ual storage of clients, which is managed by the peer-to-peer
method. Every client that wants to use the proxy cache sys-
tem provides its own storage and this storage is organized
into the peer-to-peer based proxy cache system, which is
used to store requested objects. Each client uses a DHT
based p2p protocol to find the location where an object re-
sides in the cache system and each client only manages
its small DHT. When the number of clients increases, the
storage for the cache system increases automatically and
the cache system also preserves the level of performance
without any cost for new storage. These p2p based web
caching systems can be categorized into two types: central
server based systems and fully decentralized systems. On
the Sect. 2, we describe the detailed mechanisms of them.

Although p2p based web caches have many advan-
tages, there is a common problem that limits performance
improvement. That is, the relation between the p2p storage
and the characteristics of web objects, such as the size and
temporal locality, is not considered. Because of the nature
of the DHT based p2p protocol, an object is matched to a
client that has the numerically closest node ID to the object
ID. However, the size of the web object varies from 10 bytes
to 10 Mbytes or more, and the client loads are unbalanced.
Some clients cannot store large sized objects whose size is
greater than the maximum size of their storage. As a result
of this deficiency in the management of p2p storage, stor-
age is not used efficiently even when the available storage
of the p2p based web cache system is increased. In particu-
lar, storage of large sized objects is problematic and the hit
ratio for such objects decreases. As a result, more external
bandwidth is required to fetch large sized objects from an
outside source.

In addition, the lengthy lookup of the p2p based system
should be addressed. Unlike normal file sharing systems,
the web cache system should respond to each client as soon

Copyright © 2007 The Institute of Electronics, Information and Communication Engineers

KIM and PARK: EFFICIENT AND TAILORED RESOURCE MANAGEMENT FOR THE P2P WEB CACHING

as possible. P2p based systems distribute the routing infor-
mation to each client and a lookup message follows some
hops to the destination. A request for p2p storage requires
more lookup traffic and more latency than in a traditional
web proxy. In this case, if the p2p storage attempts to store
a greater number of small sized objects so as to maximize
the effect of temporal locality, even in circumstances of light
request traffic and a high hit ratio, the lookup overhead will
be relatively long. Accordingly, the previous approaches in-
volve long user-perceived latency.

In this paper, in order to exploit the characteristics of
web objects efficiently for p2p based web caching systems,
we manage distributed objects with different caching poli-
cies according to their size. The primary emphasis of the
proposed approach is on storing large sized objects effi-
ciently. If the number of clients that want to use the cache
system increases, the total storage of the whole cache sys-
tem also increases. This feature yields sufficient storage to
store requested objects, particularly small sized objects, and
leads to a high hit ratio. However, because of the limited
storage of clients and low priority of large sized objects, the
effect of the hit for large sized objects is not exploited. As
such, internet traffic is reduced enormously. If large sized
objects are stored efficiently, then both a high hit ratio and a
high byte hit ratio could be achieved. To this end, we sug-
gest two policies: a storage policy and a replacement policy.

For the storage policy, small sized objects are stored
alone, but large sized objects are stored by dividing then
into many small blocks, as each client does not have ade-
quate storage for the whole of the object. Each client who
stores large sized objects obtains the header objects for the
objects and data blocks are distributed in other clients. Thus,
the storage overhead for each client is reduced and is bal-
anced. In particular, the proxy cache that is used in central
server based p2p web caching systems [3],[4] stores only
small sized objects and the header objects for large sized
objects except data blocks so as to achieve a high hit ratio
and reduce the response delay.

When a cache requires space for new objects, it evicts
less useful cached objects, which are selected by the replace-
ment policy. The proxy cache, which handles all requests,
adheres to a legacy replacement policy, which evicts large
sized objects as soon as possible. However, in the client
storage, we evict small sized objects first. That is, we give
large sized objects higher priority than small sized objects
so as to increase the availability of the large sized objects.
In order to prevent the loss of even a single block of the
large sized object spoils the whole of the object, we apply
the n-chance replacement algorithm to the clients. This pol-
icy permits the chance of moving blocks for n times before
evicting the blocks and makes the availability higher.

By using these policies, both the hit ratio and the byte
hit ratio increase for the p2p based web caching system. In
web caching systems, in addition to the hit ratio and the byte
hit ratio, the perceived response time is an important param-
eter. Generally, p2p based web caching systems can achieve
a high hit rate, but the response time is longer than that of a

49

traditional web caching system because of the heavy lookup
cost. To determine how the proposed policies affect these
systems, we constructed simple models for these p2p based
web caching systems and analyzed the response times. Ac-
cording to this analysis and the simulation result in Sect. 4,
we can find out that our policies help for the p2p based web
caching system decreasing the user latency.

This paper is organized as follow. In Sect.2, we de-
scribe the peer-to-peer web caching briefly. Section 3 in-
troduce the detail of storing large sized objects and cache
replacement policies. The analysis of the response time is
also appeared in this section. The simulation environment
and the performance evaluation are given in Sect. 4. Finally,
we conclude in Sect. 5.

2. Background

In recent years, new solutions have been proposed to utilize
residual client storage, which is managed by p2p methods to
address the issue of scalability. These solutions can be cate-
gorized into two types: central server based systems [2]-[4]
and fully decentralized systems [5]. The central server based
systems use client storages as backup storages. As shown in
Fig. 1 (a), if a client request misses in a local browser cache
and the proxy cache, the proxy server will find the correct
object in the clients’ storage. In [3], the proxy server con-
nected to a group of networked clients maintains an index
file of data objects of all clients’ caches. To distribute the
load of the proxy server to the clients, [2] proposes new ap-
proach involving superclients which help the proxy server
and maintain a divided index file. In [4], the virtual web
cache is composed of the proxy server and the connected

Proxy
Request Proxy Miss
Lookup
Lookup
/A\\L
Client A Home
Node

(a) Central server based system.

Lookup
i T

T~ Lookup

N
|

Home
Node
/
Request /
S /
—
Client A

(b) Fully decentralized system.

Fig.1 Peer-to-peer based web cache systems.

50

clients. These are in the same AS and the proxy server only
maintains a small DHT, which is used to lookup the client
storage. In [5], a fully decentralized p2p web cache called
Squirrel is proposed. Web caching workloads are taken by
all clients and the dedicated proxy server is eliminated. Fig-
ure 1 (b) shows the basic operation of Squirrel.

To efficiently exploit the resources of clients, these
approaches use a self-organizing p2p routing substrate for
their object location service in order to identify and route
the home node, which contains a copy of the requested ob-
ject[6]-[9]. In a self-organizing and decentralized manner,
these protocols provide a DHT that reliably maps a given
object key to a unique live node in the network. If a node
wants to find an object, the node simply sends a query to a
selected node determined by the DHT with the object key
corresponding to the object. According to this procedure,
an object is mapped to a live node. However, because web
objects have very various sizes ranging from 10bytes to
10 Mbytes or more, the storage usage and requested traffic
is unbalanced despite that p2p protocols balance the number
of objects for which each client is responsible.

Moreover, because client storage is small and may
be limited by owner imposed constraints, large sized ob-
jects whose size is greater than the maximum storage of
a client cannot be stored. Consequently, a load unbalance
occurs and the byte hit rate is limited; this wastes external
bandwidth despite solving scalability problems with the p2p
method. Moreover, the p2p based web caching system have
too much overhead to find objects and the response time also
increases. When the based p2p protocols attempt to locate
an object, the lookup cost is averagely O(log(N)), where N
is the number of live nodes in the system. In the case of
CHORD [6], when the number of nodes is 500, the average
lookup cost is O(log2(500)), i.e., about 9, which increases
the response time excessively. In addition, when a client re-
quests an object, the p2p based web caching systems should
use O(log(N)) of lookup messages, which constitute addi-
tional traffic overhead.

3. Proposed Idea
3.1 Handle of Large Sized Objects

In both types of p2p based web caches, an object is stored in
the corresponding client, called the home node, which has
numerically closest node key to the object key. Small sized
objects can be stored at each home node by itself. However,
each client supports the residual resource which is not used
by a client and it is too small to store the whole of the large
sized object. To solve this problem, we break up the large
sized object into many small sized blocks and store these
blocks to many clients. Each block has the block key which
is obtained by hashing the block itself and the home node
for the block key stores it. According to this, all of blocks
for a large sized object are distributed in the clients and the
storage overhead for each client is reduced and balanced.
The index-based allocation method to store large sized

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.1 JANUARY 2007

objects is used, as this method is simple, cost-effective func-
tions simply for random access. Figure 2 shows the sim-
ple structure of the proposed index-based allocation method.
Initially, the object header block is required. This con-
tains basic information about a large sized object, such as
its URL, size and time of modification, and index point-
ers, such as single, double and triple indirect index point-
ers. Direct index pointers are not used in the object header
block. In the general indexed method, a direct index pointer
is used to store small files and to avoid making unnecessary
index blocks. However, the size of the stored objects is large
enough so that the overhead of the index blocks can be ne-
glected. The home node for a large sized object stores this
object header block instead of storing the object itself.

An index pointer indicates an index block using an in-
dex block key, which is the hashed value of the index block
itself. The index block is composed of a URL, as well as
block pointers which address data using a data block key,
and the range of the block pointers. The data block is the
leaf block of this method, and stores the actual data chunk.
Each data block has a URL as well as a block number, which
is assigned continuously from the start of the object to the
end.

3.2 Storage Policy

Figure 3 shows how the client or proxy stores the requested
objects. We use two lists, a Small sized Object List (SOL)
and a Large sized Object List (LOL), to store objects. The
SOL and LOL are basically managed by the LRU (Least-
Recently-Used) list. The SOL is simple linked lists of small

Object Key
=Hash(URL)

Index Block Key

= Hash(Index Block) Data Block Key

=Hash(Data Block)

Index Block

Object Header Block Data Block

Fig.2 The structure of a large sized object.

Small sized Object List
F »G »K »J »1 »D
Large sized Object List

C »A »E »H »B Object Header

Blocks
A J v v v v
Cc3 Al E2 H5 B13
A J v v v
Cco9 A4 E20 B20
hd i Index and Data
AlS ‘ Blocks

Fig.3 SOL (Small sized Object List) and LOL (Large sized Object List).

KIM and PARK: EFFICIENT AND TAILORED RESOURCE MANAGEMENT FOR THE P2P WEB CACHING

sized objects, because small sized objects are stored by
themselves. The LOL is the linked lists of the object header
blocks of large sized objects. One header block has a block
list whose entries indicate the index and data blocks of the
large sized object on this storage. For example, in Fig. 3, the
storage that has this LOL contains C, A, E, H, and B, which
are large objects, and C3 and C9, which are the index or the
data blocks for the large object C.

In the central server based system, the clients use both
the SOL and the LOL; otherwise the proxy cache uses the
SOL and the LOL without an index or data blocks. The
proxy cache should handle all requests regardless of the lo-
cation of the requested object. If there are more requested
objects, the p2p based web caching system saves bandwidth
and reduces more perceived user latency. By this approach,
a maximal number of objects is stored in the proxy cache.
To do this, in the proxy cache, the object header block takes
the place of a large sized object and the remaining storage
is used to store small sized objects. This increment of the
number of small sized objects in the proxy cache helps re-
duce bandwidth usage and retrieval delay, because hits for
small sized objects prevent expensive and long p2p lookups
for them in the clients’ storage. The clients’ storage is gener-
ally used to lookup large sized objects, whose lookup over-
head is negligible.

In a fully decentralized system where there is no cen-
tral server, every client uses both the SOL and the LOL and
every client acts performs the same role. Accordingly, this
system distributes the object in a well balanced manner and
stores more objects; however, user latency is not reduced.

3.3 Replacement Policy

All web caches have limited storage and thus require a re-
placement algorithm that chooses which objects are evicted
when new objects are requested and new storage is needed.
Generally, web caches evict large sized objects as soon as
possible so as to store more small sized objects. However, in
p2p storage, this approach harms the user-perceived latency
due to the long latency and heavy control traffic involved in
the lookup for an object. In order to prevent compulsory la-
tency and traffic, we give large sized objects higher priority
than small sized objects at the clients’ storage. That is, the
proxy cache is mainly responsible for storing small sized ob-
jects while the clients mainly maintain large sized objects.
The implementation of well separated roles for each part of
the p2p based web caching system helps increase both the
hit ratio and the byte hit ratio.

For example, if a client that has a SOL and LOL, as
shown in Fig. 3, requires space for new objects, it first evicts
“D”, which is a small sized object and the least recently
used object. Then, if the client needs more space, it evicts
other small sized objects until the SOL is empty. If a cache
needs space and the SOL is empty, it is necessary to evict the
blocks of large sized objects. In this case, we evict “B20”,
which is the last data block of the least recently used large
sized object “B”. If it is necessary to evict more objects, the

51

sequence of the evicted object will be “B13”, “B”, “H5”,
“H”, “E20”, and so on. However, in the proxy, because
it does not store the index and data blocks of large sized
objects and there are numerous small sized objects, the re-
placement occurs at the SOL only. The object header blocks
are only evicted when a lookup miss occurs and the client
notices that a large sized object has been evicted.

Large sized objects are well distributed in the clients,
but missing just one block can spoil the whole of the large
sized object. The missing of a block occurs when a client
leaves/fails or if a client evicts blocks to to store new blocks
(replacements). It is possible to overcome client failures or
departures by applying a simple replication strategy to the
p2p protocol for the clients’ storage[7],[11]. In order to
solve the problem of a replacement, blocks to be evicted are
transferred to other clients before they are evicted. When a
client evicts a block, it first regenerates a different block key
by hashing the block and an optional suffix having a random
value. In order to move the block correctly, the client finds
the object header block, index block and the block number
of the evicted block through the URL, and updates the block
pointer with the new block key. The possibility of moving
blocks for one large sized object is permitted until the num-
ber of chances is larger than a threshold value, n. If a large
sized object uses all n chances, all of the blocks of the object
are removed from the clients’ storage. This is known as the
n-chance replacement policy. In our simulation, the n value
is 5.

3.4 Analysis of the Response Time

In web caching systems, the hit ratio, the byte hit ratio and
the perceived response time are all important parameters.
If the response time is too long for the user to wait for a
requested object, though a p2p-based web caching systems
achieves a high hit ratio and a high byte hit ratio, these sys-
tems do not excel at web caching.

To determine how the proposed system affects the re-
sponse time of web caching systems, simple models for the
systems are utilized. Additionally, a number of simplifying
assumptions regarding the p2p substrate are made. First,
the data is assumed to be always available. Even if clients
dynamically join or leave, the availability of the data is pre-
served by the fault-tolerant p2p substrate, and this fault han-
dling does not affect response time. Second, the total num-
ber of clients is assumed to remain static, and the p2p lookup
cost is limited and manages the average value by the ideal
formula, O(logN).

For a set of N identical clients interconnected by high
speed LANs whose bandwidth is B;, the average RTT of the
connection from a client to another client is R;. There is
a proxy cache which is placed at the front end of the intra
network. The bandwidth of the outside link is B,, and the
average RTT of an internet connection is R,. The hit ratio of
the web caching system is H, and the hit ratio of the proxy
cache is H,,, which does not include hits from the clients’
storage. The object size is S. According to these parameters,

52

simple models of the expected latencies were made for the
various p2p based web caching systems.

These following equations represent the response times
for the only proxy cache (P), the fully decentralized system
(C) and the central server based system (PC). Basically,
when the miss occurs we need more transfer time to get the
objects from outside links which have less bandwidth (B,)
than the bandwidth of inside links (B;). Moreover, when
we use the p2p method we need more lookup time such
as Log(N)R;. Especially in the fully decentralized system,
though the hit occurs, the lookup time still exists and this
make the response time longer.

To overcome this lookup overhead, we should maxi-
mize both of the hit ratio and the byte hit ratio and reduce
more transfer time from outside links. When the p2p based
web caching systems use our policies, the both of the hit ra-
tio and the byte hit ratio increase effectively, and this helps
reducing more external traffic. For example, the fully de-
centralized system (C) has basically longer lookup overhead
(Log(N)R;) than the only proxy cache (P), but if the hit ratio
on C increases effectively by using our policies, the effect
of high hit ratio compensates for the lookup overhead of the
p2p based system. Moreover, on the central server based
system (PC), we can reduce more lookup overhead than P
and C. When we use our policies, the proxy cache can store
more small sized object and the hit ratio of the proxy (H,)
increases effectively. This increase of H), prevent to take
the long lookup in the clients’ storage (Log(N)R;) and the
transfer time from outside links more effectively than P and
C. Consequently, our new policies make the p2p based web
caching systems reducing the response time and encourage
the web caching systems to adopt the p2p method. On the
Sect. 4, we can find out that the our policies help the p2p
system reducing the latency.

P=H.R;+S/B))
+(1-H)R;+R,+S/B;+S/B,)
C = H,(Log(N)R; + S/B;)
+(1- H,)(Log(N)R;+ R,+ S/Bi+ S/B,)
PC = H.(H,(R; +S/B))
+ (1 — Hp,)(Log(N)R; + S/B)))
+(1-H)R;+R,+S/B; +S/B,)

4. Performance Evaluation

In this section, we present the results of extensive trace
driven simulations that we have conducted to evaluate the
performance of our caching policies. We design our p2p
based web cache simulator to conduct the performance eval-
uation. We have assumed that we simulate the behavior of
a proxy cache effectively. The proxy cache is error-free and
does not store non-cacheable objects: dynamic data, larger
size data than total cache storage, control data, and etc. We
also assume that there are not any problems in the network,
such as congestions and buffer overflows. The size of a

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.1 JANUARY 2007

proxy cache is 200 MBytes and each client has 10 MBytes
storage. We assume the large sized object is bigger than
1 Mbytes and the size of blocks for them is 32 KByte.

In our trace-driven simulations we use traces from
KAIST, which uses a class B ip address for the network.
We show some of the characteristics of these traces in Ta-
ble 1. Note that these characteristics are the results when
the cache size is infinite.

We compare five systems such as only proxy (P), the
central server based system (PC), the central server based
system with our policies (PCL), the fully decentralized sys-
tem (C) and the fully decentralized system with our policies
(CL). P, PC and C use the LRU policies for the object man-
agement.

4.1 Preliminary Inspection

In order to estimate the performance of the proxy cache, ob-
servations were made that measured the number of objects
handled by the proxy cache. If more hits occurred in a proxy
cache, the proxy cache was said to achieve better perfor-
mance. However, every hit does not have same weight. A
good example of this is the byte hit. As the size of a re-
quested object is variable, both the large number of hits for
a small sized object and a small number of hits for a large
sized object achieve similar byte hits. In Fig. 4, the distribu-
tion of the hits which occurs in a proxy cache is shown when
the aforementioned traces are used, simulate a proxy cache
whose storage is infinite. The hits are distributed by the size
of a file. The maximum number of hits obtained takes place
for files whose sizes are approximately 256 Bytes, and for a
minimum value for 64 MB (approximate size) files. How-
ever, in terms of the byte hit, the byte hits on files close
to 64 MB are larger than those for files of approximately
256 MB.

According to these results, if the general replacement
algorithms evict large sized objects to achieve a high hit
rate, they must sacrifice a high byte hit rate. To prevent this
degradation of the byte hit rate, it is necessary to store large
sized objects in an exclusive storage area having no relation-
ship to the proxy cache. Large sized objects can be stored in
the client-cluster, which is composed of clients and required
no management cost for a proxy cache or other storage

Additionally, in Fig. 4, hits decrease rapidly for files of
nearly 1 MByte. This value, 1 MByte, is used as the thresh-
old value for selecting large sized objects.

Table 1 Traces used in our simulation.
| Traces || Trace 1 | Trace 2 |
Measuring day 2001.10.08 | 2001.10.09
Requests Size 9.02GB 11.66 GB
Object Size 3.48GB 4.92GB
Request # 699280 698871
Object # 215427 224104
Hit Rate 69.19% 67.93%
Byte Hit Rate 63.60% 57.79%

KIM and PARK: EFFICIENT AND TAILORED RESOURCE MANAGEMENT FOR THE P2P WEB CACHING

1.E+06

1.E+05 A
1 E+04 ,’} \yf'&‘ﬁ*ﬂ—&f—s_‘

1.E+03 /

Hit Number { #)

1.E402 =

BR
\‘%
1.E+01

P00 Lo
Q@ FH o g o

Obiject Size (Byte)

I—x— Trace 1 = Trace 2|

(a) Hit number.

1800
1600
1400
1200
1000

800

600
400 AR

200 o \ g

oM

& &

Byte Hit (MByte)

St \a »
db N £

Object Size (Byte)

[+ Trace 1 = Trace 2|
(b) Byte hit.

Fig.4 Hit distribution in the cache system which has the infinite storage.

4.2 Hit Rate and Byte Hit Rate

Figures 5 and 6 show comparisons of the hit rate and the
byte hit rate. In Fig. 5, we find that the both of the p2p based
web caching systems achieve about 20% higher hit rate than
the normal web proxy caching system. However, in Fig. 6,
even if the hit rate of the fully decentralized system is much
higher than the only proxy, its byte hit rate is about half
of the byte hit rate of the only proxy. In this system, the
client which has limited cache storage can not store large
sized objects and it can not get the effect of the hit for large
sized objects. Oppositely, in the fully decentralized system
with our policies, though the hit rate is slightly lower than
the fully decentralized system, but the byte hit rate is much
bigger than it. Moreover, in the central based system whose
byte hit rate is already bigger than the only proxy, when we
apply our policies to this system, the byte hit rate increases
more.

Because large sized objects are given higher priority
than small sized objects in order for the large sized objects
to come to be many, the cache pollution can occur in the
client’s storage. In the Fig. 5, p2p web caching systems with
our policy (PCL, CL) achieve lower hit rate than normal p2p
web caching systems (PC, C). However, this degradation of
hit rate dwindles away when the number of client increases
and the storage of the system increase. Moreover, when a

53
80
70 —
~ 60 mP
< 50 mPC
% 40 OPCL
< 30 mc
T 20 ECL
10
0
Number of Clients (#)
(a) Trace 1.
80 r
70
2% mP
% 50 mPC
2 40 OPCL
x 30 Ooc
T o mCL
10
0
Number of Clients (#)
(b) Trace 2.
Fig.5 Hit rate comparison.
70
—~ 60
f 50 mP
£ 40 mPC
o OPCL
g 90 mfe
g 20 mCL
@ 10
0
Number of Clients (#)
(a) Trace 1.
70 1
—~ 60
f 50 mP
% 40 W PC
o OPCL
g % mc
220 mCL
@ 10
0

Number of Clients (#)
(b) Trace 2.

Fig.6 Byte hit rate comparison.

large sized object is evicted, the relatively large free space

is obtained and small sized objects can be stored.
According to these, if we handle the large sized object

efficiently in p2p based web caching systems, we achieve

54

not only the high hit rate but also the high byte hit rate. In
addition, when the number of clients increases, if we use our
policies, both of the hit rate and the byte hit rate increase
remarkably, otherwise, they increase little. This means the
p2p based web cache systems with our policies are more
scalable.

4.3 External Traffic

We define external traffic as the number of bytes transferred
between the intra network and original servers including ob-
ject data and control messages. This traffic, which uses the
core-link of the inter network, should be of a small value for
good performance of the Internet and the web caching sys-
tem. Figure 7 show the external traffic. Like the results of
hit rates and byte hit rates, if we use our policies, we save the
external traffic remarkably. In the central server based sys-
tem, our policies save about 1 GB traffic and in the fully de-
centralized system, our policies reduce about 2.5 GB traffic.
The p2p based systems save more external traffic than only
proxy except the fully decentralized system. Amazingly, the
fully decentralized system wastes most of the external traf-
fic among the systems. The reason is that though its hit rate
is much higher than only proxy, this system achieves low-
est byte hit rate. According to this, not only the hit rate
but also the byte hit rate is important parameter for the p2p
based web caching system to save outgoing bandwidth and
our policies help them reducing the external traffic.

7 -
é 6
ws B mP
24 mPC
@ OPCL
= 9 oc
(]
g mCL
31
w

0

100 200 300 400
Number of Clients (#)
(a) Trace 1.

g -
2B
& d mP
o 6
é) 5 mPC
g O PCL
— 4
S 3 oc
32 mCL
>
W

0

100 200 300 400
Number of Clients (#)
(b) Trace 2.

Fig.7 External traffic comparison.

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.1 JANUARY 2007

4.4 Control Traffic

We divide large sized objects to many small blocks and we
need more control traffic to gather the distributed blocks,
such as lookup messages of p2p substrate, requests for in-
dex blocks and requests for data blocks. In our simulation,
we set the block size to 32 KB and set the size of a control
message to 32 B. Figure 8 shows the comparison of the con-
trol traffic. We find that the p2p based web caching systems
use more control traffic than normal web caching system,
because the lookup for the p2p substrate need the multiple
routing hops and need additional messages for the routing
process. Especially, the fully decentralized system use much
more control traffic than the central server based system, be-
cause this system always use the p2p lookup. Moreover,
when we use our policies we use more control traffic. How-
ever, in Fig. 7, though there is the additional control traffic,
the p2p based web caching systems with our policies reduce
much more external traffic, and both of the traffic for the
object data and the traffic of control messages are included
in the external traffic. Consequently, the increment of the
performance of p2p based web caching systems with our
policies covers up the additional control traffic for the large
sized objects and the p2p lookups.

4.5 Response Time

Though the p2p based web caching systems support very big
storage, the lookup cost is very heavy because the lookup of

—~ 250
m
L 200 _
®
= 150 HmPC
S oPCL
é 100 — oc
) HCL
2 50
g
< 0
100 200 300 400
Number of Clients (#)
(a) Trace 1.
; 250
L 200 -
®
= 150 mPC
g O PCL
8 100 oc
2 EmCL
2 50
g
< 0
100 200 300 400
Number of Clients (#)
(b) Trace 2.

Fig.8 Control traffic comparison.

KIM and PARK: EFFICIENT AND TAILORED RESOURCE MANAGEMENT FOR THE P2P WEB CACHING

the p2p substrate needs the multiple routing hops. General
DHT based p2p protocols need O(log N) lookups where N
is the number of the live nodes in the system. In Fig. 9, we
show the comparison of the average latency. Moreover, in
Fig. 10, we show the comparison of the latency in cumula-
tive density function style. Because of the lookup overhead,
the fully decentralized systems need more latency than oth-
ers. This lookup overhead is observed easily in the Fig. 10.
Every request of C and CL takes about 50 msec lookup over-
head. However, the central server based systems (PC, PCL)
achieve less latency time than others even though they use
DHT based p2p protocol. This means that they are more
suitable to the web caching system than the fully decentral-
ized systems. Moreover, when we use our policies with both
of the central server based and fully decentralized systems,
we reduce the average latency more in accordance with the
increment of clients. Especially, in the fully decentralized
systems, when the number of clients is 400, we reduce the
latency by 45 msec.

In Fig. 10, when our policies are applied, the 90th per-
centile of the latency increases slightly. In clients’ storage,
large sized objects have higher priority than small sized ob-
jects and the evicted small sized objects are obtained from
the outside link. This cache pollution effect decreases the
hit rate and increases the latency slightly. However, this in-
crease is only few msec and negligible. Moreover, when an
user requests a large sized object and many small sized ob-
ject, this slight increase of the latency is compensated with
the profit of the hit for the large sized object.

According to these facts, we find that our policies not

T 250
o
§ 200 N N
£ mP
<. 150 mPC
§ OPCL
< 100 oc
—
) W CL
@ 50
s
< 0
100 200 300 400
Number of Clients (#)
(a) Trace 1.
5 300
o
G 250 =
% EP
£ 200
- EPC
§ 150 O PCL
S 100 ks
g HCL
& 50
g
< 0
100 200 300 400
Number of Clients (#)
(b) Trace 2.

Fig.9 Average latency comparison.

55

only increases both of the hit rate and the byte hit rate, but
also reduces the average latency.

4.6 Various Proxy Size

According to the previous results, our policies are more
suited for the central server based p2p web caching than
fully distributed p2p web caching. The Fig. 11 shows the
performance comparison of a central server based p2p web
caching with various sizes of a proxy cache. The num-
ber of clients is 100 and the size of a proxy cache varies
from 100 MB to S00MB. In PC system, the clients’ stor-
age stores many small sized objects and the system achieves
very high hit rate without any relation to the size of a proxy
cache. However, despite of the very high hit rate, the byte
hit rate does not increase remarkably. When the proxy size
increases and there is room for store large sized objects in
the proxy cache, the byte hit rate of PC system increases.
In PLC system which uses our policies, while the hit rate
is lower than PC system, it achieves very high byte hit rate.
The clients’ storage tries to keep large sized objects and the
proxy cache has the most frequently accessed small sized
objects. When the size of a proxy cache increases, the num-
ber of stored small sized objects in the proxy cache increases
and the hit rate increases linearly to the size of a proxy
cache. Even if the trade-off of the performance exists be-
tween our policies and legacy policies, the average latency
is similar to each other, like Fig. 11 (c).

120

g 100
2 80 Vi =P
8 o "Pe
g 60 /’__/L’ ——CP:CL
% 40 *
M
& j:'::'/".‘ /

O o I ;’ L 1 1 1 J

0 50 100 200 500 700 1000
Latency (msec)
(a) Trace 1.
120

£ 100
8 80 : Z
dc> . }——;A =PC
g 60 A > PCL
[' J —Fr
= 40 1/ -4 C
o “+ CL
g 20
& /

O ! 1 A 1 1 | 1]

0 50 100 200 500 700 1000

Latency (msec)
(b) Trace 2.

Fig.10 Latency comparison in CDF style. (client number: 200)

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.1 JANUARY 2007

56
Table 2 Summary of client loads for Trace 2.
| | | Mean Size | Dev. || MeanReq. | Dev. || MeanBreq | Dev. |
100 PC 9904 KB 9.91% 3519 2.82% 65772 KB 94.41%
PCL 10360 KB 1.04% 3565 2.24% 71168361 60.13%
C 9906KB | 9.84% 6918 12.54% || 113489KB | 109.37%
CL || 10147KB | 1.68% 7568 11.48% || 134783KB | 92.12%
200 PC 9406 KB 16.04% 1768 3.89% 33751 KB 127.08%
PCL || 10386KB | 0.71% 1793 3.22% || 35961KB | 80.42%
C 9494 KB 15.24% 3477 16.97% 58128 KB 152.58%
CL 10074 KB 1.37% 3774 15.66% 67855 KB 130.79%
80 r and requested queries when our policies are applied. Table 2
0 shows a summary of client loads. When our policies are ap-
F 60 I plied, while the deviation of request number decreases lit-
Y 50 =P tle, the deviations of storage size and byte request decrease
g 40] ;ESL remarkably. The previous p2p based web caching does not
g N consider the web characteristics, especially the size and each
20 client gets different loads even if the request queries are bal-
10 H
anced. However, our policies divide the large sized object
0 L) .
into many small blocks and not only the request queries but
100 200 300 400 500
' also the other loads are balanced. Moreover, because the
Proxy Cache Size (MB) client loads are balanced and the storage can be used effi-
(a) Hit rate.
ciently, each client stores more object. It helps increasing
70 - the performance of p2p based web caching system, such as
60 __ o hit rate and byte hit rate.
2 50 L
£ 4o L |mP 5. Conclusions
a9
- HPC
T %0 TloPeL . . .
£ 20 L In this paper, we suggest the efﬁc1ept policies for .thft P2p
. 10 Ll based web caching systems to exploit the characteristics of
. | Web objsctsB.Basically, C\lye appl}}I t.he .different cachir;g polic-1
i rdin ir size: n
100 200 300 400 500 ciestot GOJect§acco gtot § S e.storagepozcya
ey sl ks B replacement policy. The small sized objects are stored by
foxy t-ache wize itself, but the large sized objects are stored by dividing into
(b) Byte hit rate. .
many small blocks because each client does not have enough
5 200 storage for the whole of the object. The clients store both
2 types of objects which are small sized objects and all blocks
S 160 . : . : .
& e, T—— of large sized objects. The proxy stores small sized objects
§, 120 = —— -~P and the header objects for large sized objects to achieve high
Q . .
< = PC hit rate and reduce the proxy overhead. Unlike on the proxy
g =0 -+ PCL cache, on the client we give large sized objects higher prior-
§ 40 ity than small sized object and maximize the effect of hit for
] the large sized object which increase the byte hit rate. The
< ‘ s j

100 200 300 400 500

Proxy Cache Size (MB)
(c) Average latency.

Fig.11 Performance comparison for Trace 1 with various proxy cache
size.

4.7 Client Loads

The client loads are examined, including storage size, re-
quest number, byte request, and the deviation of each pa-
rameters, in order to verify that the clients balance storage

trace based simulation confirms that our policies is efficient.
References

[1] A. Wolman, G.M. Voelker, N. Sharma, N. Cardwell, A. Karlin,
and H.M. Levy, “On the scale and performance of cooperative Web
proxy caching,” Proc. SOSP 1999, pp.16-31, Dec. 1999.

[2] Z.Xu, Y. Hu, and L. Bhuyan, “Exploiting client cache: A scalable
and efficient approach to build large Web,” Proc. International Paral-
lel and Distributed Processing Symposium, (IPDPS’04), pp.55-64,
April 2004.

[3] L.Xiao, X. Zhang, and Z. Xu, “On reliable and scalable peer-to-peer
Web document sharing,” Proc. International Parallel and Distributed
Processing Symposium, (IPDPS’02), pp.23-30, April 2002.

[4] K.Kim and D. Park, “Efficient and scalable client clustering for Web

KIM and PARK: EFFICIENT AND TAILORED RESOURCE MANAGEMENT FOR THE P2P WEB CACHING

(51

[6

=

[7

—

[8

[l

[

[10]

[11]

proxy cache,” IEICE Trans. Inf. & Syst., vol.E86-D, no.9, pp.1577-
1585, Sept. 2003.

S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A decentralized
peer-to-peer web cache,” Proc. Principles of Distributed Comput-
ing’02, pp.213-222, 2002.

1. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” Proc. ACM SIGCOMM 2001, pp.149-160, Aug. 2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized ob-
ject location and routing for large-scale peer-to-peer systems,” Proc.
International Conference on Distributed Systems Platforms (Mid-
dleware), pp.329-350, Nov. 2001.

B.Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing,” UCB Techni-
cal Report, UCB/CSD-01-114, 2001.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” Proc. ACM SIGCOMM
2001, pp.161-172, 2001.

P. Druschel and A. Rowstron, “PAST: A large-scale, persistent peer-
to-peer storage utility,” Proc. HotOS VIII, pp.75-80, May 2001.

F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and
1. Stoica, “Wide-area cooperative storage with CFS,” Proc. SOSP
2001, pp.202-215, Oct. 2001.

Kyungbaek Kim received his B.S. degree
and M.S. degree in electrical engineering from
the Korea Advanced Institute of Science and
Technology (KAIST) in 1999 and 2001, respec-
tively. Current he is a Ph.D. candidate at KAIST
in Korea. His research interests include op-
erating system, distributed system, world wide
web, peer-to-peer algorithm/network and over-
lay multicast.

Daeyeon Park received his B.S. and M.S.
degrees in computer science from University of
Oregon, USA, in 1989 and 1991, respectively
and Ph.D. degree in computer science from Uni-
versity of Southern Califonia, USA, 1996. He
worked at Hankuk University of Foreign Studies
from 1996 to 1997. He joined the Department of
Electrical Engineering at KAIST in 1998, where
he is currently an Assistant Professor. His major
interests include operating system, distributed
system, parallel processing, and computer archi-

tecture. He is a member of KIEE, KISS, and IEEE.

57

